Chemistry 500: Chemistry in Modern Living

Topic 3: The Chemistry of Global Warming

Molecular Structures and Moles

Chemistry in Context, 2nd Edition: Chapter 3, Pages 73-110

Chemistry in Context, 3rd Edition: Chapter 3, Pages 93-136

Outline Notes by Dr. Allen D. Hunter, YSU Department of Chemistry, ©2000.

Outline

3A	THE GREENHOUSE EFFECT	3
	CHANGES IN CO ₂ OVER TIME	
3C	MOLECULES: HOW THEY SHAPE UP	6
3D	VIBRATING MOLECUL ES	10
3E	WEIGHING SUBSTANCES	13
3F	CALCULATING WITH MOLES	16
3G	HUMANS AND CO ₂	18
3Н	METHANE AND GLOBAL WARMING	20
3I	WHERE DO WE GO FROM HERE: CLIMATE MODELING AND FUTURE CHANGES	21

3A The Greenhouse Effect

- ➤ What is a gardening greenhouse?
 - ➤ A heater and a cover (glass or plastic cover)
 - ➤ Hand Drawing!
- > Earth as a greenhouse
 - ➤ The atmosphere acts as a cover
 - Lets light in but does not let heat out
 - ➤ Graphics from Text: Figure 3.2, the Earth's Greenhouse
 - ➤ Venus has an actual average temperature of 450 °C vs. 100 °C if no greenhouse effect
 - ➤ Earth has an actual average temperature of 15 °C vs. -18 °C if no green house effect
- ➤ Greenhouse Gasses
 - \triangleright CO₂, H₂O, CFCs, etc.

3B Changes in CO₂ Over Time

- ➤ Graphics from Text: Figure 3.1, Atmospheric CO₂ changes over the last 160,000 years
 - ➤ Note: the correlation between temperatures and [CO₂]
 - ➤ Note: the waxing and waning of the Ice Ages
 - ➤ How measured?
- ➤ Graphics from Text: Figure 3.3, Mona Loa [CO₂]
 - ➤ Note: The seasonal variations and longer term trends in [CO₂]
- ➤ Graphics from Text: Figure 3.4 in 2nd Edition and 3.5 in 3rd Edition, Average measured temperature changes at the earth's surface
 - ➤ How measured?
- ➤ Graphics from Text: Figure 3.4 in the 3rd Edition, predicted trends in CO₂ emissions

- ➤ How estimated?
- ➤ Dynamic Balance of CO₂
 - ➤ Photosynthesis

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{Light Energy} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 \text{ (Glucose)} + 6 \text{ O}_2$$

> Respiration

$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O + Energy$$

- ➤ Longer term processes
 - **➤** Biomass
 - > Fossil Fuels
 - ➤ Carbonate Minerals (e.g., Calcium Carbonate)

$$CO_2 + Ca^{+2}$$
 (sea water) $\rightarrow Ca(CO_3) \downarrow$

➤ Graphics from Text: Figure 3.8 in 2nd Edition and 3.9 in 3rd Edition, the Carbon Cycle

3C Molecules: How They Shape Up

➤ How do we know molecular shapes?

Experimental Observations of Shapes

 $\downarrow \downarrow$

Measurements of Bond Lengths and Bond Angles

 $\downarrow \downarrow$

Correlations with Bonding Theories

 $\downarrow \downarrow$

Predictions of Shapes for New Molecules

- ➤ Observed Molecular Shapes
 - ➤ General Features of Structures
 - ➤ Complex 3D Shapes
 - ➤ 109.5°, 120°, and 180° Bond Angles
 - > correlated with the number of groups around an atom
 - $ightharpoonup 1.2 1.55 \text{ Å Bond Distances (C-H} <math>\approx 1 \text{ Å})$
 - > Correlated with Bond Order
 - ➤ Structural Correlations with Properties

- ➤ VSEPR, Valence Shell Electron Pair Repulsion Theory
 - \triangleright Molecular shapes \Rightarrow Bond Angles
 - ➤ Each "thing" is an attached atom or a lone pair
 - \triangleright Four things \Rightarrow Tetrahedral, td, 109.5°
 - \triangleright Three things \Rightarrow Trigonal planar, 120°
 - ightharpoonup Two things \Rightarrow Linear, 180°

➤ Bond Distances

- \triangleright Single Bonds \Rightarrow Long Distances
- ➤ Double Bonds ⇒ Medium Distances
- \triangleright Triple Bonds \Rightarrow Short Distances

> Example

➤ Ask Students: Predict the bond lengths and angles in the following molecules

➤ Group Activity

3D Vibrating Molecules

- The atoms in molecules never sit still with respect to one another
 - ➤ They constantly vibrate as if held together by springs
 - ➤ Once they start vibrating, the rate of vibration (i.e., its frequency) doesn't change
 - Each molecules can only vibrate at certain specific frequencies
- ➤ When a molecule is hit by a photon of light having the same energy as the energy difference between two vibration, the vibration rate will "jump up"
 - ➤ If a vibration rate slows down to a new rate, then a photon having the energy difference will be given off

- ➤ Vibration Frequencies and Molecular Structures
 - > Stronger bonds vibrate at higher frequencies
 - ➤ Weaker bonds vibrate at lower frequencies
 - ➤ Heavier atoms vibrate a lower frequencies
 - ➤ Lighter atoms vibrate a higher frequencies
 - ➤ Molecular structure effects the number and energy of vibrations
 - > The balance of these trends produces molecular spectra
 - ➤ No two of these are identical

- ➤ The more complex the molecular structure, the greater the number of vibrations that will occur
 - ➤ In the Infra-Red (IR) region of the electromagnetic spectrum
 - ➤ Graphics from Text: Figure 3.5 in 2nd Edition and 3.6 in 3rd Edition, IR Spectrum of CO₂
 - > CO₂ has a simple structure and therefore a simple spectrum
 - ➤ Graphics from Text: Figure 3.6 in 2nd Edition and 3.7 in 3rd Edition, IR Spectrum of H₂O
 - ➤ H₂O has a more complex structure and therefore a more complex spectrum
 - For Graphics from Text: Figure 3.7 in 2nd Edition and 3.8 in 3rd Edition, Molecular responses to various types of electromagnetic energy

3E Weighing Substances

- ➤ One can determine the weight of individual molecules or collections of molecules
 - > Steps to calculate the Molecular Weight, MW, of the substance
 - ➤ 1st, find the atomic weight of each atom in the substance
 - \triangleright 2nd, multiply the weight of each atom by the number of atoms of that type to give the total weight of each element
 - > 3rd, add the total weights of all of the elements
 - ➤ 4th, this number is in AMU (Atomic Mass Units) for individual atoms and grams for moles of atoms

> Examples:

- ightharpoonup Calculate the MW of CO₂ \Rightarrow 12 + 2(16) = 44
- ightharpoonup Calculate the MW of CH₂F₂ \Rightarrow 12 + 2(1) + 2(19) = 52

- ➤ One can determine the Percent Composition of individual molecules and collections of molecules
 - > Steps to calculate Percent Composition
 - $> 1^{st}$, get the MW
 - > 2nd, get the total weight of the element in that molecule
 - ➤ 3rd, divide the total weight of that element by the MW and multiply by 100 to get percentage
 - > 4th, repeat for all elements

> Example:

➤ Calculate the %C, %H, and %F of CH₂F₂ (remember MW

$$= 52)$$

$$> \%C \implies 12 / 52 \times 100 = 23.1 \%$$

$$\rightarrow$$
 %H \Rightarrow 2 / 52 x 100 = 3.8%

$$ightharpoonup % F \Rightarrow 38 / 52 \times 100 = 73.1\%$$

- > Ask Students: Calculate the MW and Elemental
 - Compositions of the following molecules
 - ➤ Group Activity
 - \triangleright CS₂
 - **>** MW =
 - **>** %C =
 - > %S =

- $ightharpoonup C_3H_2F_4$
 - **>** MW =
 - **>** %C =
 - ➤ %H =
 - > %F =

3F Calculating with Moles

- > Determining the number of moles of a substance you have
 - > Steps:
 - ➤ Determine the Molecular Weight of the substance
 - ➤ Determine the Weight of the substance
 - ➤ Divide the two numbers, i.e., # Moles = Weight / MW
- > Determining the number of grams of a substance you have
 - > Steps:
 - > Determine the Molecular Weight of the substance
 - ➤ Determine the number of moles of the substance
 - ➤ Divide the two numbers, i.e., Weight = # Moles x MW
- Examples (For each of the following, determine the number of moles or weight of the substance, as required):
 - ightharpoonup For CH₂F₂ (MW = 52)

- Ask Students: For each of the following, determine the number of moles or weight of the substance, as required
 - ➤ Group Activity
 - ➤ CS₂ 20 g

 $ightharpoonup CS_2$ 0.24 moles

 $ightharpoonup C_3H_2F_4 11.5 g$

 $ightharpoonup C_3H_2F_4$ 11.6 moles

3G Humans and CO₂

- ➤ Ask Students: Estimate the number of tons of CO₂ produced by your car each year
 - ➤ Group and Board Activity
 - > Steps:
 - \triangleright Number of gallons of gas you add each week = ?
 - > Assume each gallon of gas weighs about 4 kg
 - Assume that the formula for gasoline is C_8H_{18} (i.e., pure Octane)
 - ➤ Balance the reaction for combustion

$$C_8H_{18}$$
 + CO_2 + H_2O

- ➤ From the number of kg of Octane, calculate the number of moles of octane
- ➤ From the number of moles of Octane, calculate the number of moles of CO₂
- ➤ From the number of moles of CO₂, calculate its weight

- \triangleright Given the number of cars in the world, one can easily see that we release a lot of CO_2
- ➤ Human effects on CO₂ balance
 - ➤ People release a total of about 6 7 billion tons per year
 - > 5 billion tons from fossil fuels
 - > 1 2 billion tons from deforestation
 - ➤ CO₂ levels
 - ➤ 290 ppm before the Industrial Revolution
 - > 360 ppm in 2000
 - ➤ net increase of 1.5 ppm per year
 - ➤ of total CO₂ people release
 - > one half is lost to Biosphere and Geosphere
 - ➤ this leaves about 3 billion tons added per year (i.e., 1.5 ppm or 740 billion metric tons)

3H Methane and Global Warming

- ➤ Remember: Methane has more peaks in its IR than does CO₂
 - ➤ It therefore is a stronger greenhouse gas (about 15 30 times)
- > Sources of Methane
 - > Swamps (marsh gas)
 - ➤ Rice Paddies
 - ➤ Ruminant (cattle, sheep) flatulence (73 million tons per year)
 - > Termites (about 0.5 tonnes of termites per person)
 - ➤ Natural Gas production leaks
- > Clatherates
 - ➤ Methane ices
 - ➤ Arctic permafrost
 - > Sea Beds
 - ➤ Fuels?
 - ➤ Non-linear effects

Chemistry 500 Dr. Hunter's Class Topic 3. 21

3I Where do we go from here: Climate Modeling and Future

Changes

- ➤ Climatic Modeling
 - ➤ Limits to its accuracy
 - > Program limitations
 - > Computer limitations
 - ➤ Science understanding limitations
 - ➤ Data limitations
 - ➤ What it does
 - ➤ General predictions
 - ➤ Average temperature changes
 - ➤ Changes in extreme temperatures
 - ➤ Rainfall changes
- ➤ Sources of political controversy, differential costs/benefits

Index of Vocabulary and Major Topics

[Correlations with Bonding	6
I	costs/benefits	21
[CO ₂]4	CS ₂	15, 17
1	D	
109.5°7, 8	Distances	8
120°7	Double Bonds	8
180°7	Dynamic Balance of CO ₂	5
\boldsymbol{A}	\boldsymbol{E}	
AMU13	Earth	
Arctic permafrost	Earth's Greenhouse	3
Ask Students	electromagnetic energy	12
atmosphere3	electromagnetic spectrum	12
Atmospheric CO ₂ changes over the last 160,000 years	element	13
4	Elemental Compositions	15
Atomic Mass Units	energy difference	10
atomic weight	Experimental Observations	6
В	$oldsymbol{F}$	
Biomass5	flatulence	20
Biosphere 19	Fossil Fuels	5
Bond Angles	frequencies	11
Bond Distances	frequency	
Bond Lengths 6	Fuels	20
Bond Order	G	
\boldsymbol{c}		2
	gardeningGeosphere	
$C_3H_2F_4$	Glucose	
$C_6H_{12}O_6$		
C_8H_{18}	gramGraphics from Text	
Ca(CO ₃)		
Ca ⁺² 5	greenhouse	
Calcium Carbonate	greenhouse gasGreenhouse Gasses	
Calculate the MW		
Calculating with Moles	Group ActivityGroup and Board Activity	
Carbon Cycle5	Group and Board Activity	10
Carbonate Minerals5	H	
cattle	11.0	2 5 12 10
CFC	H ₂ O Humans and CO ₂	
CH ₂ F ₂		10
Changes in CO ₂ Over Time4	I	
Clatherates	Inc. A cos	4
Climatic Modeling	Ice Ages	
CO ₂ 3, 5, 12, 13, 18, 20	individual atoms	
CO ₂ balance	Industrial RevolutionInfra-Red	
CO ₂ levels		
combustion	IR of CO	
Complex 3D Shapes7	IR Spectrum of CO ₂	12

Dr. Hunter's Class

Chemistry 500

Topic 3. 23