Chemistry 1506: Allied Health Chemistry 2

Section 5: Carboxylic Acids and Esters

Functional Groups with Single & Double Bonds to Oxygen

Outline

SECTION 5.1 INTRODUCTION, NOMENCLATURE, AND PROPERTIES ..2
SECTION 5.2 IMPORTANT CARBOXYLIC ACIDS ..7
SECTION 5.3 AMINO ACIDS HAVING CARBOXYLIC ACID CONTAINING SIDE CHAINS8
SECTION 5.4 BIOLOGICAL CARBOXYLIC ACIDS ..9
SECTION 5.5 PREPARATION OF CARBOXYLIC ACIDS ...10
SECTION 5.6 ACID/BASE CHEMISTRY ...11
SECTION 5.7 ESTERS ...13
SECTION 5.8 BIOLOGICAL ESTERS ..15
SECTION 5.9 ESTER SYNTHESIS AND HYDROLYSIS ...16
SECTION 5.10 PHOSPHOROUS ACIDS AND ESTERS ...21
Section 5.1 Introduction, Nomenclature, and Properties

- Generic Structure of Carboxylic Acid and Carboxylic Acid Derivatives

- Members of this Class
 - Carboxylic Acids
 - Esters
Acid Chlorides

Anhydrides

Amides
Physical Properties

Mp and Bp

taste and “feel”

Hydrogen Bonding

H-bond Donors

O-H and N-H

H-bond Acceptors

Lone pairs of O, N, and S

Directionally Specific

Hydrogen Bonds and Covalent Bonds
Relative Strengths of Intermolecular Bonds

- Van der Waals <
- Dipole - Dipole <
- Hydrogen Bonds <
- Covalent Bonds ≈ Ionic Bonds
Hydrogen Bonded Dimers of Carboxylic Acids

Apparent Doubling of MW

Cf. DNA

IUPAC Nomenclature of Carboxylic Acids

anoic acid (two words)

Examples
Section 5.2 Important Carboxylic Acids

- Formic Acid (Methanoic Acid)
 - Ants

- Acetic Acid (Ethanoic Acid)
 - Vinegar

- Oxalic Acid (dicarboxylic acid)
 - Rhubarb, Spinach, etc.

- Benzoic Acid
Section 5.3 Amino Acids having Carboxylic Acid Containing Side Chains

➢ Amino Acids (Building Blocks of Proteins)
➢ Generic AA = H₂N-CHR-CO₂H

➢ Aspartic Acid (acidic)
➢ R = CH₂C(=O)-OH

➢ Glutamic Acid (acidic)
➢ R = CH₂CH₂C(=O)-OH
Section 5.4 Biological Carboxylic Acids

➢ Fatty Acids

➢ R-CO₂H
Section 5.5 Preparation of Carboxylic Acids

- Oxidation Reactions
 - Oxidation of Aldehydes (Strong)
 - Oxidation of 1° Alcohols (Strong)
Section 5.6 Acid/Base Chemistry

- Equilibrium of Carboxylic Acids and Water
- Effects of the Electronegativity of R

- Carboxylic Acids plus Bases
 - Base = OH\(^-\), CO\(_3\)\(^{-2}\), HCO\(_3\)\(^-\), NR\(_3\), Pyridine, etc.
Nomenclature of Carboxylate Salts

- **Metal Alkanoate**
- **Examples**

Carboxylate Salts plus Acids

- **HCl, H₂SO₄**, etc.
Section 5.7 Esters

- Generic Structure

- Partial Charges on Carbon (δ^+) and Oxygen (δ^-)

- No Hydrogen-bonding with self

- H-bonding acceptor

- Physical Properties

- Mp and Bp

- Cf. Carboxylic Acids

- odor
Ethyl Acetate (Ethyl Ethanoate)

IUPAC Nomenclature

Alkyl Alkanoate

Examples
Section 5.8 Biological Esters

- Triglycerides

- Glycerol and Fatty Acids
Section 5.9 Ester Synthesis and Hydrolysis

- **Direct Esterification**
 - Uses H^+ catalyst

- **Direct Hydrolysis**
 - Uses H_3O^+ (i.e., H^+/H$_2$O)
Direct Esterification (easier)

- Via Acid Chlorides (Thionyl Chloride, SOCl₂)
 and Alcohols

- Alkanoyl Chlorides
Anhydride Routes to Esters

- Acetic Anhydride (only anhydride name for 506)

- Preparation via Acid Chloride plus Carboxylic Acid

- Anhydride plus Alcohol (easy)
Synthesis of “Polyester”

- Condensation Polymers
- Dacron, etc. Used in Fibers, Pop bottles, etc.

- PET, Poly(ethylene terephthalate)

- Terephthalic Acid plus Ethylene Glycol
Ester Hydrolysis

Hydrolysis by H_3O^+

Hydrolysis by OH^-

Soapoinification

Hydrolysis by lipase
Section 5.10 Phosphorous Acids and Esters

- H_3PO_4 neutralization
- Stepwise addition of OH$^-$
- H_3PO_4 alkylation
 - Addition of one equivalent of Alcohol
 - Cf. Carboxylic Acid reactions
 - Enzyme catalyzed gives monoalkyl phosphates

- Diesters and Triesters
Index of Topics and Vocabulary

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid</td>
<td>7</td>
</tr>
<tr>
<td>Acetic Anhydride</td>
<td>18</td>
</tr>
<tr>
<td>Acid Chloride</td>
<td>18</td>
</tr>
<tr>
<td>Acid Chlorides</td>
<td>3, 17</td>
</tr>
<tr>
<td>Acid/Base Chemistry</td>
<td>11</td>
</tr>
<tr>
<td>Alcohols</td>
<td>17</td>
</tr>
<tr>
<td>Alkanoyl Chlorides</td>
<td>17</td>
</tr>
<tr>
<td>Alkyl Alkanoate</td>
<td>14</td>
</tr>
<tr>
<td>alkylolation</td>
<td>22</td>
</tr>
<tr>
<td>Amides</td>
<td>3</td>
</tr>
<tr>
<td>Amino Acids</td>
<td>8</td>
</tr>
<tr>
<td>Amino Acids having Carboxylic Acid</td>
<td>8</td>
</tr>
<tr>
<td>Acid Containing Side Chains</td>
<td>7</td>
</tr>
<tr>
<td>Anhydride</td>
<td>18</td>
</tr>
<tr>
<td>Anhydrides</td>
<td>3</td>
</tr>
<tr>
<td>anoic acid</td>
<td>6</td>
</tr>
<tr>
<td>Ants</td>
<td>7</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>8</td>
</tr>
<tr>
<td>Base</td>
<td>11</td>
</tr>
<tr>
<td>Benzoic Acid</td>
<td>7</td>
</tr>
<tr>
<td>Biological Carboxylic Acids</td>
<td>9</td>
</tr>
<tr>
<td>Biological Esters</td>
<td>15</td>
</tr>
<tr>
<td>Bp</td>
<td>4, 13</td>
</tr>
<tr>
<td>Carboxylate Salts</td>
<td>12</td>
</tr>
<tr>
<td>Carboxylic Acid</td>
<td>2, 18</td>
</tr>
<tr>
<td>Carboxylic Acids</td>
<td>2, 6</td>
</tr>
<tr>
<td>Carboxylic Acids and Water</td>
<td>11</td>
</tr>
<tr>
<td>Carboxylic Acids plus Bases</td>
<td>11</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>11</td>
</tr>
<tr>
<td>Condensation Polymers</td>
<td>19</td>
</tr>
<tr>
<td>Covalent Bonds</td>
<td>4, 5</td>
</tr>
<tr>
<td>Dacron</td>
<td>19</td>
</tr>
<tr>
<td>Derivatives</td>
<td>2</td>
</tr>
<tr>
<td>dicarboxylic acid</td>
<td>7</td>
</tr>
<tr>
<td>Diesters</td>
<td>22</td>
</tr>
<tr>
<td>Dipole - Dipole</td>
<td>5</td>
</tr>
<tr>
<td>Directionally Specific</td>
<td>4</td>
</tr>
<tr>
<td>DNA</td>
<td>6</td>
</tr>
<tr>
<td>Doubling of MW</td>
<td>6</td>
</tr>
<tr>
<td>Electronegativity</td>
<td>11</td>
</tr>
<tr>
<td>Ester Synthesis and Hydrolysis</td>
<td>16</td>
</tr>
<tr>
<td>Esterification</td>
<td>16, 17</td>
</tr>
<tr>
<td>Esters</td>
<td>2, 13</td>
</tr>
<tr>
<td>Ethanoic Acid</td>
<td>7</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>14</td>
</tr>
<tr>
<td>Ethyl Ethanoate</td>
<td>14</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>19</td>
</tr>
<tr>
<td>Fatty Acids</td>
<td>9, 15</td>
</tr>
<tr>
<td>Fibers</td>
<td>19</td>
</tr>
<tr>
<td>Formic Acid</td>
<td>7</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>8</td>
</tr>
<tr>
<td>Glycerol</td>
<td>15</td>
</tr>
<tr>
<td>H⁺ catalyst</td>
<td>16</td>
</tr>
<tr>
<td>H⁺/H₂O</td>
<td>16</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>12</td>
</tr>
<tr>
<td>H₃O⁺</td>
<td>16</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>21</td>
</tr>
<tr>
<td>H-bond Acceptors</td>
<td>4</td>
</tr>
<tr>
<td>H-bond Donors</td>
<td>4</td>
</tr>
<tr>
<td>H-bonding acceptor</td>
<td>13</td>
</tr>
<tr>
<td>HCl</td>
<td>12</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>11</td>
</tr>
<tr>
<td>Hydrogen Bonded Dimers</td>
<td>6</td>
</tr>
<tr>
<td>Hydrogen Bonding</td>
<td>4</td>
</tr>
<tr>
<td>Hydrogen Bonds</td>
<td>4, 5</td>
</tr>
<tr>
<td>Hydrogen-bonding</td>
<td>13</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Hydrolysis</td>
<td>16, 20</td>
</tr>
<tr>
<td>Hydrolysis by H$_3$O$^+$</td>
<td>20</td>
</tr>
<tr>
<td>Hydrolysis by lipase</td>
<td>20</td>
</tr>
<tr>
<td>Hydrolysis by OH$^-$</td>
<td>20</td>
</tr>
<tr>
<td>Important Carboxylic Acids</td>
<td>7</td>
</tr>
<tr>
<td>Intermolecular Bonds</td>
<td>5</td>
</tr>
<tr>
<td>Introduction, Nomenclature, and Properties</td>
<td>2</td>
</tr>
<tr>
<td>Ionic Bonds</td>
<td>5</td>
</tr>
<tr>
<td>IUPAC</td>
<td>6, 14</td>
</tr>
<tr>
<td>lipase</td>
<td>20</td>
</tr>
<tr>
<td>Lone pairs</td>
<td>4</td>
</tr>
<tr>
<td>Metal Alkanoate</td>
<td>12</td>
</tr>
<tr>
<td>Methanoic Acid</td>
<td>7</td>
</tr>
<tr>
<td>monoalkyl phosphates</td>
<td>22</td>
</tr>
<tr>
<td>Mp</td>
<td>4, 13</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>6, 12, 14</td>
</tr>
<tr>
<td>NR$_3$</td>
<td>11</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>11, 21</td>
</tr>
<tr>
<td>Oxalic Acid</td>
<td>7</td>
</tr>
<tr>
<td>Oxidation of 1° Alcohols</td>
<td>10</td>
</tr>
<tr>
<td>Oxidation of Aldehydes</td>
<td>10</td>
</tr>
<tr>
<td>Oxidation Reactions</td>
<td>10</td>
</tr>
<tr>
<td>Partial Charges</td>
<td>13</td>
</tr>
<tr>
<td>PET</td>
<td>19</td>
</tr>
<tr>
<td>Phosphorous Acids and Esters</td>
<td>21</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>4, 13</td>
</tr>
<tr>
<td>Poly(ethylene terephthalate)</td>
<td>19</td>
</tr>
<tr>
<td>Polyester</td>
<td>19</td>
</tr>
<tr>
<td>Preparation of Carboxylic Acids</td>
<td>10</td>
</tr>
<tr>
<td>Proteins</td>
<td>8</td>
</tr>
<tr>
<td>Pyridine</td>
<td>11</td>
</tr>
<tr>
<td>Relative Strengths of Intermolecular Bonds</td>
<td>5</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>7</td>
</tr>
<tr>
<td>Soaponification</td>
<td>20</td>
</tr>
<tr>
<td>SOCl$_2$</td>
<td>17</td>
</tr>
<tr>
<td>Spinach</td>
<td>7</td>
</tr>
<tr>
<td>Terephthalic Acid</td>
<td>19</td>
</tr>
<tr>
<td>Thionyl Chloride</td>
<td>17</td>
</tr>
<tr>
<td>Triesters</td>
<td>22</td>
</tr>
<tr>
<td>Triesters</td>
<td>22</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>15</td>
</tr>
<tr>
<td>Van der Waals</td>
<td>5</td>
</tr>
<tr>
<td>Vinegar</td>
<td>7</td>
</tr>
<tr>
<td>δ^-</td>
<td>13</td>
</tr>
<tr>
<td>δ^+</td>
<td>13</td>
</tr>
</tbody>
</table>

©2000-2002, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University