Chemistry 1506: Allied Health Chemistry 2

Section 10: Enzymes

Biochemical Catalysts

Outline

SECTION 10.1 INTRODUCTION ...2
SECTION 10.2 FACTORS EFFECTING ENZYME ACTIVITY6
SECTION 10.3 MECHANISM OF ENZYMES ..10
SECTION 10.4 ENZYME REGULATION ..12
Section 10.1 Introduction

- **Enzymes**
 - Biological Proteinaceous Catalysts
 - Increase rates by 10^{10} to 10^{20}
 - More than 3,000 enzymes in a cell

- **Shapes of Proteins**
 - Most enzymes globular shapes
 - Structural proteins within cells typically rod like shapes
 - Structural proteins within our bodies typically fibrous shapes
6 Major Types of Enzymes

- Oxidoreductases
 - Do Redox Reactions (Oxidation and Reduction)

- Transferases
 - Transfer CH₃, NH₂, etc., groups

- Hydrolases
 - Hydrolysis Reactions (add water while breaking bonds)

- Lyases
 - Double bond addition/elimination reactions

- Isomerases
 - Isomerizations

- Ligases/Synthetases
Join Fragments together
Cofactors

- Non-protein parts of enzymes
- Metal salts
 - e.g., Mg$^{+2}$, Ca$^{+2}$, Fe$^{+2}$...
- Organics
 - referred to as coenzymes
 - e.g., heme

General Enzyme Structures

- Active Sites
 - Substrate Binding and Reactivity
- Regulatory Sites
 - Activator and Deactivator (Inhibitor) Binding Sites
Section 10.2 Factors Effecting Enzyme Activity

➢ Enzyme Activity (on Conversion of Substrate to Product)

\[\text{Substrate} \ (+\text{Enzyme}) \rightarrow \text{Product} \]

➢ The effect of the enzyme concentration on the reaction rate

➢ Linear dependence of Rate on [Enzyme]

➢ All enzyme molecules are working at maximum speed and therefore twice as much enzyme will catalyze the reaction twice as fast
➢ The effect of the substrate concentration on the reaction rate

➢ Saturation Curve dependence seen

➢ The maximum rate \(R_{\text{max}} \) is observed where all enzyme molecules are fully occupied which requires a certain substrate concentration
Other Influences on Reaction Rate

Effect of Temperature on Reaction Rate

There is an optimum temperature for each enzyme reaction.

If the temperature gets a little too high the rate reduction is reversible.

If the temperature gets a lot too high the rate reduction is irreversible.
Effect of pH on Reaction Rate

Why

Because enzyme shape changes with the temperature, pH, [Ca^{2+}], etc.

This causes the active site to change which changes the rate
Section 10.3 Mechanism of Enzymes

- **Nature of Enzyme-Substrate Complex**
 - **Lock and Key Model**

- **Induced Fit Model**

- **Reality in Between**

- **Enzyme Binding to Substrate** affected by
 - Both **Reaction site** and “cabbage” on the substrate
 - Both Reaction site and “cabbage” on the active site

- **Active site** usually in hole or cleft in protein
- **Competitive Inhibition**
 - Occurs when there is competition for the active site
 - Inhibitor is almost the same (shape, charge, etc.) as the substrate “key”

- **Non-Competitive Inhibition**
 - No competition at the active site
 - Inhibitor binds somewhere else on the protein
 - Regulatory site
 - This changes the shape of the “lock”

- Graph of inhibitor effects on rate
Section 10.4 Enzyme Regulation

- Typical Metabolic Pathway

```
A → E1 → B → E2 → C → E3 → D
```

- End Product Inhibition (E1 inhibition by D)
- Starting Materials Activation (E1 activation by A)
- Feedback control
Proenzymes

- Inactive proteins that are cleaved to give active forms when needed
- Very fast way to increase active enzyme concentration
- cf. New synthesis of enzyme

Allosterism

- Binding at non-active site which reversibly speeds/slow reaction
Index of Topics and Vocabulary

Activator ... 4
active site .. 8
Active site .. 9
Active Sites .. 4
Allosterism .. 12
Binding Sites .. 4
Ca\^2+ .. 4
cabbage ... 9
Catalysts ... 2
coenzymes .. 4
Cofactors .. 4
Competitive Inhibition 10
Conversion of Substrate to Product 5
Deactivator .. 4
Double bond addition/elimination reactions 3
End Product Inhibition 11
Enzyme Activity ... 5
Enzyme Binding to Substrate 9
enzyme concentration 5
Enzyme Regulation 11
enzyme shape changes 8
Enzyme Structures 4
Enzymes .. 2
enzymes in a cell 2
Enzyme-Substrate Complex 9
Factors Effecting Enzyme Activity 5
Fe\^2+ .. 4
Feedback control 11
fibrous shapes .. 2
globular shapes ... 2
heme ... 4
Hydrolases .. 3
Hydrolysis Reactions 3
Inactive proteins 12
Increase rates by \(10^{10}\) to \(10^{20}\) 2
Induced Fit Model 9
Inhibitor .. 4, 10
inhibitor effects on rate 10
Introduction .. 2
irreversible .. 7
Isomerases ... 3
Isomerizations .. 3
Join Fragments together 3
Ligases .. 3
Linear dependence of Rate on [Enzyme] 5
Lock and Key Model 9
Lyases ... 3
maximum rate .. 6
maximum speed 5
Mechanism of Enzymes 9
Metabolic Pathway 11
Metal salts ... 4
Mg\^2+ ... 4
Non-Competitive Inhibition 10
Oxidation .. 3
Oxidoreductases 3
pH on Reaction Rate 8
Product ... 5
Proenzymes ... 12
Proteinaceous .. 2
Reaction site .. 9
Redox Reactions 3
Reduction ... 3
Regulatory site .. 10
Regulatory Sites 4
R\(_{\max}\) ... 6
rod like shapes .. 2
Saturation Curve dependence 6
Shapes of Proteins 2
Starting Materials Activation 11
Substrate ... 5
Substrate Binding and Reactivity 4
substrate concentration 6
substrate concentration on the reaction rate 6
synthesis of enzyme 12
Synthetases .. 3
Temperature on Reaction Rate 7
Transfer CH\(_3\), NH\(_2\), etc., groups 3
Transferases .. 3
Types of Enzymes 3

©2000-2002, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University