Chemistry 1500: Chemistry in Modern Living

Topic 7: Manipulating Molecules and Designing Drugs

Organic Chemistry

Chemistry in Context, 2nd Edition: Chapter 11, Pages 351-386
Chemistry in Context, 3rd Edition: Chapter 10, Pages 375-414
Chemistry in Context, 4th Edition: Chapter xxx, Pages xxx-xxx

The Figure, Table, & Problem numbers in these notes are taken from the 4th edition of the text unless otherwise noted.

Graphics from Text: Figure xxx.0
Outline

7A ORGANIC CHEMISTRY...3
7B HOW DO WE KNOW MOLECULAR STRUCTURES? ..5
7C APPOACHES TO MAKING MOLECULES ..9
7D STRUCTURAL ISOMERS..10
7E FUNCTIONAL GROUPS..13
7F DRUG DISCOVERY..20
7A Organic Chemistry

- Organic Chemistry is the study of the chemistry of carbon

- What makes carbon special?
 - Many bond types
 - Forms long chains
 - Forms strong bonds to almost all elements
 - Over 16,000,000 organic compounds known
 - Being discovered at the rate of over 1,000,000 per year

- Bonding
 - Lewis dot structures
 - Remember from Topic 2 the ways that different elements bond
Bond Distances and Bond Angles

- **Ethane, C₂H₆**
 - Carbon - Carbon Single Bond
 - C-C distance of 1.54 Å
 - Bond angles of 109.5 °

- **Ethene, C₂H₄**
 - Carbon - Carbon Double Bond
 - C-C distance of 1.34 Å
 - Bond angles of 120 °

- **Ethyne, C₂H₂**
 - Carbon - Carbon Single Bond
 - C-C distance of 1.20 Å
 - Bond angles of 180 °
7B How Do We Know Molecular Structures?

- First Approach
 - Logical Reasoning
 - Informed by reactivities and crude compositions
 - Only tools available were:
 - Balances
 - Melting Points, mp
 - Boiling Points, bp
 - Taste, Smell, Textures, etc.
Second Approach

Elemental Analysis

Classical Wet Methods

One element at a time

Example: $\text{Ag}^+ \text{ precipitation of } \text{Cl}^-$

Instrumental Methods

Multi-element Simultaneous

Automated

Example: Combustion Analysis
Third Approach

- X-Ray Diffraction
 - What is a crystal?

- What is an X-ray?

- What are the components of a diffractometer?

- How does one solve a structure?

- Types and Reliability of Information
Fourth Approach

Sporting Methods

- The specific absorption of electromagnetic waves
- The pattern of the absorption tells us information about the structure (indirectly)

Infrared Spectroscopy, IR

Ultraviolet-Visible Spectroscopy, UV-Vis

Nuclear Magnetic Resonance Spectroscopy, NMR

Mass Spectroscopy, MS
7C Approaches to Making Molecules

- Synthetic Methods Development

- Conventional Serial Synthesis Methods

- Combinatorial Synthesis Methods
7D Structural Isomers

➤ Definition

➤ Same atoms but attached differently

➤ Types

➤ Positions of Atoms

➤ Strait Chain vs. Branched Chain

➤ Multiple Bonds vs. Rings

➤ Example [For the following molecular formulae, draw all of the structural isomers (up to a maximum of 5). Be sure that you show all atoms and bonds for each.]

➤ C₂H₆O
➢ Ask Students: For each of the following molecules, draw all structural isomers (up to a maximum of five)

➢ Group Activity

➢ C₂H₆O₂

➢ C₃H₉N
\[\text{C}_4\text{H}_{10} \]

\[\text{C}_3\text{H}_6 \]
7E Functional Groups

- Graphics from Text: Figure 11.2 in 2nd Edition and 10.2 in 3rd Edition, Functional Group Classification

- Hydrocarbons
 - Alkanes

- Alkenes
➤ Alkynes

➤ Arenes
Groups with Oxygen(s)

- Alcohols

- Ethers

- Aldehydes
➢ Ketones

➢ Carboxylic Acids

➢ Esters
Groups with Nitrogen

- Amines

- Amides
➤ Ask Students: In the following molecule(s), identify all functional groups by circling them and then name each functional group

➤ Group Activity

©2000 & 2004, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Asks Students: Draw a molecule with each of the following functional groups (making sure to label each)

➢ Group Activity

➢ Alcohol, Alkene, and Ether

➢ Arene, Amine, and Ketone

➢ Carboxylic Acid, Alkyne, and Ester
7F Drug Discovery

➤ Sources of potential pharmaceuticals
 ➤ Natural products isolation

➤ Biochemical understanding

➤ Random Synthesis
 ➤ Synthetic molecules

➤ Semisynthetic molecules
Process of drug discovery

- Approximately 10,000 chemicals screened for every new product

- Typically it costs between $300,000,000 to $500,000,000 to bring a new drug candidate to market

Stages

- Initial candidate drug discovery
- Study of biochemistry / physiology / pharmacology
- Systematic variation of drug structure
- Scale up of production
- Marketing
- Throughout: safety and efficacy testing
Index of Vocabulary and Major Topics

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alcohol, Aldehydes, Alkenes, Alkynes, Amides, Approaches to Making Molecules, Arenes, Ask Students, Asks Students</td>
</tr>
<tr>
<td>B</td>
<td>Balances, Biochemical understanding, Boiling Points, Bond angle, Bond Angles, Bond Distances, bond types, Bonding, bp, Branched Chain</td>
</tr>
<tr>
<td>C</td>
<td>C₂H₂, C₂H₄, C₂H₆, C₃H₆, C₃H₆O₂, C₃H₈, C₄H₁₀N, Carbon - Carbon Double Bond, Carbon - Carbon Single Bond, Carboxylic Acids, chains, chemistry of carbon, Cl⁻, Combinatorial Synthesis Methods, Combustion Analysis, Conventional Serial Synthesis Methods</td>
</tr>
<tr>
<td>D</td>
<td>Ag⁺, 109.5°, 120°, 180°, 1.54 Å, 1.34 Å, 1.20 Å, distance of 1.54 Å, distance of 1.34 Å, distance of 1.20 Å, Drug Discovery, diffractometer, efficacy testing, elemental analysis, esters, ethane, ethene, ethyne, ethers,</td>
</tr>
</tbody>
</table>